Integration formulas for Brownian motion on classical compact Lie groups

نویسنده

  • Antoine Dahlqvist
چکیده

Combinatorial formulas for the moments of the Brownian motion on classical compact Lie groups are obtained. These expressions are deformations of formulas of B. Collins and P. Śniady for moments of the Haar measure and yield a proof of the First Fundamental Theorem of Invariant and of classical Schur-Weyl dualities based on stochastic calculus.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Martingale Characterizations of Stochastic Processes on Compact Groups

By a classical result of P. L evy, the Brownian motion (B t) t0 on R may be characterized as a continuous process on R such that (B t) t0 and (B 2 t ? t) t0 are martingales. Generalizations of this result are usually obtained in the setting of the so-called martingale problem. This paper contains a variant of the martingale problem for stochastic processes on locally compact groups with indepen...

متن کامل

Exact solutions for Fokker-Plank equation of geometric Brownian motion with Lie point symmetries

‎In this paper Lie symmetry analysis is applied to find new‎ solution for Fokker Plank equation of geometric Brownian motion‎. This analysis classifies the solution format of the Fokker Plank‎ ‎equation‎.

متن کامل

Brownian Processes for Monte Carlo Integration on Compact Lie Groups

This paper proposes a Monte Carlo approach for the evaluation of integrals of smooth functions defined on compact Lie groups. The approach is based on the ergodic property of Brownian processes in compact Lie groups. The paper provides an elementary proof of this property and obtains the following results. It gives the rate of almost sure convergence of time averages along with a “large deviati...

متن کامل

Integration formulas for the conditional transform involving the first variation

In this paper, we show that the conditional transform with respect to the Gaussian process involving the first variation can be expressed in terms of the conditional transform without the first variation. We then use this result to obtain various integration formulas involving the conditional $diamond$-product and the first variation.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016